Nest sanitation in Sarus Cranes Grus antigone in Uttar Pradesh, India

K. S. GOPI SUNDAR and B. C. CHOUDHURY

Nest sanitation, particularly disposal of nesting faecal sacs, is well-studied in altricial bird species (e.g. Morton 1979, McGowan 1995, Dell’omo et al. 1998), but there are few descriptions of this behaviour in precocial species (e.g. Littlefield 1978). Nest sanitation reduces the likelihood of infestation by parasites (fly maggots, fleas, ticks and mites) or pathogens (bacteria and fungi) by maintaining dryness in the nest (Welty and Baptista 1988, Ehrlich et al. 1994), and reduces the nest's conspicuousness to predators (Weatherhead 1984, Petit et al. 1989). After hatching, egg-shells are routinely carried away from the nest in most bird species (Welty and Baptista 1988). Several avian nest predators are known to use conspicuous shells to locate nests (Tinbergen et al. 1963). Removal of eggs with broken shells is carried out in most bird species and is thought to result from 'an ancestral, universal and continuing selection pressure' resulting from the threat that broken eggs pose to other eggs in a nest (Kemal and Rothstein 1988, M Ally et al. 2000).

Nest sanitation in Sarus Cranes Grus antigone has not been described specifically by previous workers on this species, all of whom have studied a population in Kolkadeo National Park, Rajasthan (K.N.P: Ali 1958, Breeden and Breeden 1982, Ramachandran and Vijayan 1994). This species builds large, conspicuous nests in natural wetlands or paddy fields, and lays 1–2 eggs. The incubation period is 31 days (range: 27–35 days in the present study). The precocial chicks leave the nest permanently after two or three days, and never use the nest beyond a week after hatching (K. S. G. Sundar, personal observations). Nest sanitation is therefore only relevant during and immediately after incubation, in particular, immediately after hatch. Close observation of nests in the wild is difficult since most nests are surrounded by vegetation, and adults may abandon nests and eggs if disturbed (Ramachandran and Vijayan 1994; S. Sharma pers. comm. 2000).

Three possible types of material for nest sanitation were identified: (1) faeces of adult birds during and immediately after incubation; (2) egg-shell and other matter after hatching of the chicks, and (3) partially depredated and infertile eggs. Observations on all three are described and discussed in this note.

METHODS

The breeding biology of Sarus Cranes was studied during two breeding seasons in June 2000–July 2002 in Etawah and Mainpuri districts, Uttar Pradesh, in north-central India. A total of 157 nests were observed, of which 145 were visited at least once during incubation or immediately after hatching. Sarus Cranes in the study area live alongside human settlements, and are accustomed to the presence of humans the year round. As a result, visiting nests never caused incubating birds to abandon the eggs. Adult birds were sexed by observation of unison calls, during which the male droops his primaries and touches the secondaries over the back (Archibald and Meine 1996). In addition, females in all pairs were considerably smaller than males, and the sexes could be readily differentiated when the birds were together.

RESULTS

Adult faeces

Each nest was visited 1–5 times during incubation to check for hatching success, and faeces were never found on the nests. Incubating adults were observed on several occasions to walk away from nests to defeate. Adults continued to use the nest after eggs hatched in eight nests, all of which were located in natural wetlands. On two of these nests adult faeces were found immediately after hatching of the second egg. In one, there was little
The ubiquitous absence of faeces on nests with eggs suggests that Sarus Cranes, as with other crane species (G. W. Archibald in litt. 2002) normally practice nest sanitation, presumably to avoid infecting the egg and/or attracting predators during incubation. In most pairs, this also continued after hatching. The immediate disposal of the egg-shell, egg-lining and other material were probably carried out to minimise detection of newly born chicks by predators. A strong smell of yolk was present immediately after the chick hatched out, and it is possible that both visual and olfactory cues stimulate nest-sanitation by adults. Both sexes participated, with the male disposing the egg-lining and the female taking care of the shell fragments. In precocial species, faecal sacs of nestlings afford nutrition to parent birds in some species (M. Ogawa 1995, Dell’amo et al. 1998), while in others, adult birds are thought to ingest the faecal sacs as an economic alternative to the costs of transporting waste and leaving the nest unattended (Hurd et al. 1991). In birds of the dry areas, faecal sac consumption is sometimes even linked to water conservation (Calder 1968, Morton 1979). As Sarus Cranes nest near water and there was no apparent paucity of food, disposal of faecal sacs of newly hatched chicks by parent birds is therefore probably an adaptive feature to reduce predator attraction, but the adults may also derive some nutrition.

In KNP, Rajasthan, a female Sarus Crane was seen to eat egg-shell pieces and the egg lining (Ali 1958). In another observation in the park, the male ate the membrane and part of the egg-shell of the first egg, while both adults swallowed small portions of the egg-shell of the second egg and the male carried off the egg-shell and disposed it a few meters away from the nest (Breeden and Breeden 1982). Consistent sharing of duties, as recorded in this study, was not noted in KNP. Sarus Cranes during the present study were never observed to eat egg-shell as has been seen in KNP. In some crane species, the adults feed the egg-shells to the newly hatched chick (Archibald and Meine 1996). Differences between crane species, and between different Sarus Crane populations are likely to be a result of individual differences, predation pressure and perhaps levels of human disturbance.

After eggs were partly depredated, Sarus Cranes may have attempted to remove traces of egg material, both in water and on the nest, to avoid attracting predators by sight and smell. A similar case was reported from KNP, in which the adult Sarus Crane ate the broken egg after depredation by crows (Ramachandran and Vijayan 1994). Similar behaviour has been reported in Sandhill Cranes Grus canadensis (Littlefield 1978), and in many precocial birds (Kemal and Rothstein 1988, Malory et al. 2000). Adult Sarus Cranes apparently could not recognise infertile eggs or determine the usual incubation period, perhaps because the incidence of infertile eggs is too low for there to be a strong selective pressure for recognition.

ACKNOWLEDGEMENTS
These observations were made during the project ‘Impact of land-use changes on the habitat and ecology of the Indian Sarus Crane G. Grus antigone in the Indo-gangetic floodplains’ of the Wildlife Institute of India (WII), and I thank the Director for facilities and infrastructure. Permission to conduct field studies were kindly provided by the Chief Wildlife Warden, Uttar Pradesh. Field assistance to

DISCUSSION
The ubiquitous absence of faeces on nests with eggs suggests that Sarus Cranes, as with other crane species
KSGS was rendered by Sanjeev Chauhan, Deepu Singh and Ajay Verma, and accommodation at Etawah was graciously provided by Ranvir Chauhan and family. B. Didrickson (International Crane Foundation) and M. S. Rana (WII) provided timely library support. KSGS thanks G. Rana, J. Kaur, V. Prakash, S. Sharma, and B. Singh for discussions and sharing their observations on the Sarus Crane in Keoladeo National Park. G. W. Archibald provided critical comments on a previous draft of the note.

REFERENCES


Surveys for Greater Adjutant Leptoptilos dubius in the Brahmaputra valley, Assam, India during 1994-1996

HILLAJYOTI SINGHA, ASAD R. RAHMANI, MALCOLM C. COULTER AND SALIM JAVED

The Greater Adjutant Leptoptilos dubius is considered to be globally threatened (Endangered: BirdLife International 2001). It formerly occurred in much of South and South-East Asia from Pakistan through northern India, Nepal and Bangladesh to Myanmar, Thailand, Laos, Vietnam and Cambodia. However, only two small and highly disjunct populations remain: in Assam and Cambodia (Rahmani et al. 1990, BirdLife International 2001). Prior to Rahmani (1989) and Saikia and Bhattacharjee (1989a, 1989b), there was little information about the status and distribution of Greater Adjutant in Assam. Moreover recently, Bhattacharjee and Saikia (1996) presented information on the population size and trend between 1989 and 1994. This paper adds to these surveys, and reports on breeding season surveys in 1994-1995, and non-breeding surveys in 1996.

The study was confined to the Brahmaputra Valley, Assam (25°44’–27°55’ N, 89°41’–96°02’ E). The valley is c.720 km long, c.80 km wide, covers 56,274 km 2, and is demarcated by the Eastern Himalayas, Patkai hills, Naga hills, Garo-Khasi Jaintia hills and the M. irik hills (Singh 1991). The valley covers more than 60% of the area of Assam (Choudhury 1994). There are many river islands (including the 929 km 2 M. ali)[i] island: the largest river island in the world). Innumerable meandering tributaries form ox-bow lakes and huge marshy tracts.

METHODS

We surveyed Greater Adjutants in the Brahmaputra Valley during the breeding season in 1994–1995 (and occasionally during 1995–1997), and during the non-breeding season in 1996. The breeding season survey was carried out from November 1994 to March 1995, with roadside counts made from motorbike and other means of transport, searches at wetlands, and searches by boat. Colonies were also identified from information from local people, and from the literature (Saikia and Bhattacharjee 1989a, b, Saikia and Bhattacharjee 1990a, b, Barooah 1991). All 18 districts in the Brahmaputra valley in Assam were covered, except Sonitpur (Table 1). During the non-breeding season, we surveyed sites near slaughterhouses, garbage dumps and fish and meat markets in nine towns (Table 3). These sites were chosen because they were known to be