Nest-site selection by Isabelline Wheatears *Oenanthe isabellina* on the Tibet plateau

SHAOBIN LI & WEIJUN PENG

Introduction

The Isabelline Wheatear *Oenanthe isabellina* is a small insectivorous bird (Li & Lu 2012b) which, in common with most species in genus *Oenanthe*, is poorly known (Panov 2005, Kaboli et al. 2007). It has a wide distribution, breeding from central Asia to south-east Europe, and wintering in India and Africa; its altitudinal range lies between 1,000 m and over 4,000 m and it typically inhabits shrublands and grasslands, often nesting in rodent burrows (Cramp 1988, Zheng 2002, Collar 2005).

Although the species’ breeding biology has been reported (Li & Lu 2012b), little information on nest-site selection is available. This note focuses on nest-site selection by Isabelline Wheatears at about 3,400 m, near the upper limit of their breeding range, to study how they avoid predation and cope with the harsh high-altitude conditions.

Material and methods

Work was carried out between April 2009 and July 2012 in Tianjun county, Qinghai province, north-east Tibetan plateau (37.283°N 99.100°E) at 3,400 m. The climate is cold and dry, with an annual mean temperature of −1.1°C and total precipitation of 345 mm. The habitat is dominated by alpine steppe meadow, with the commonest mammal in this area being the Black-lipped Pika (*Ochotona curzoniae* (Li & Lu 2012a,b).

Isabelline Wheatear nests were located by following the adults’ breeding activities using binoculars. When a nest was located, a series of nest parameters were recorded: geographical coordinates (by GPS), burrow origin (excavated by pika or other primary cavity-nesters), burrow status (abandoned or not by the excavators), the direction of burrow entrance (by compass), the long radius (*R*1) and short radius (*R*2) of the burrow entrance (using calipers). The number of pika burrows within 36 m2 of the nest burrow was counted. The distance from the burrow entrance to the nest (entrance–nest distance) was measured during these operations. A total of 43 nests were located. Burrow entrance size (entrance hole size) was calculated by π×*R*1×*R*2. The direction of burrow entrances were designated as north, north-west, west, south-west etc. Independent or paired samples *t* tests were used to compare the means of two variables and chi-square tests were applied to determine whether the cardinal directions of selected burrows differed from a random distribution. The four years of data were pooled together because of small sample size each year. All the analyses were performed in SPSS V.16.0. Tests were two-tailed and values are given as means ± se.

Results

The majority of the nests (41) were located in burrows excavated by pikas, but two were in Hume’s Groundpecker (*Pseudopodoces humilis*) burrows in vertical banks. All 43 wheatear nests were built in abandoned burrows. Entrance hole size averaged 28.5 ± 1.2 cm2 (17.7–41.2), and no difference between the two burrow types was detected (pika burrow vs groundpecker burrow = 28.6 vs 25.9, *t* = 0.49, *p* = 0.63). Compared with the randomly selected pika burrows (*n* = 200), the ones selected by the wheatears had a smaller entrance hole size (38.6 vs 28.5, *t* = 8.27, *p* < 0.001). The directions of burrow entrances did not deviate from a random distribution (*χ*2 = 3.49, *p* = 0.32; *χ*2 = 7.15, *p* = 0.41). Within 36 m2 of a wheatear burrow, there were 2.2 ± 0.2 (n = 43) pika burrows, which is significantly fewer than around the randomly-selected burrows (6.4 ± 0.3, *n* = 50; *t* = 10.2, *p* < 0.001).

Of the 29 nests dug out, two were in Hume’s Groundpecker burrows and the nest was constructed directly on the abandoned groundpecker nest in the burrow chamber. Of the 27 nests in pika burrows, 15 (56%) were placed in the second section (between the first and second tunnel turning), nine (33%) in the third section (between the second and third turns) and the remaining three (11%) in the fourth section (beyond the third turning); 25 of the pika burrows dug out had only one opening. Nests were either in tunnels (n = 18) or in burrow chambers built on the abandoned pika nest (n = 11). The wheatear nest was a cup-shaped structure, consisting of grass stems lined with animal fur, feathers and artificial fibres. The external diameter of 12 nests was 14.6 ± 0.5 cm, the internal diameter 7.7 ± 0.4 cm, the cup depth 4.9 ± 0.2 cm, and the dry nest mass averaged 98.7 ± 15.9 g. The entrance–nest distance in pika burrows averaged 125.1 cm (n = 27), whereas the length of the two groundpecker burrows were 221 and 182 cm.

Discussion

The aims of nest-site selection are to avoid predators and improve breeding success (Lack 1968, Roff 2002). Black-lipped Pikas are abundant on the Tibetan plateau alpine steppe (Wang & Zhang 1996) and studies have found that this species may attack birds that nest in their burrows and also block burrow tunnels during its excavating activities (Du 2009, Lu *et al.* 2009, Zeng & Lu 2009). The Isabelline Wheatears selected abandoned pika burrows in areas with a low density of rodent burrows. This strategy may reduce disturbance by pikas and also predation by the Mountain Weasel (*Mustela altaica*)—a major predator of burrow-nesting birds (Du 2009, Lu *et al.* 2009, Zeng & Lu 2009, Li & Lu 2012a,b) and of pikas which are a large part of its diet, such that density and distribution of weasels is closely linked to that of pikas (Wei *et al.* 1994).

Relative to sympatric open-nesting passerines, the burrow-nesting Isabelline Wheatears benefit from better concealment from predators and a much better microclimate—higher temperature and humidity—for reproduction. These factors all contribute to improved breeding success of burrow-nesting birds (Martin & Li 1992, Martin 1995, Li & Lu 2012b). With strong winds and low temperatures prevailing throughout the year, Isabelline Wheatears frequently chose a burrow with a small entrance hole and made their nest beyond the first tunnel turning—a choice which reduces the effect of the cold wind and improves the micro-climate in the nest.

Acknowledgements

We thank Bo Du, Shiyi Tang and Xia Zong for help in the field. We also appreciate the references provided by Canwei Xia.

References

host species. However, the vocalisations of Pied Cuckoo and its hosts—Liversidge (1969) and Sunela Jayawardene. At about 10h45 he heard what sounded like a Yellow-billed Babbler. At this time it appeared to be alone, with no sign of Yellow-billed Babblers in the vicinity.

A few hours later, in the same area, GSW observed what he assumed to be the same Pied Cuckoo moving through the trees with a flock of Yellow-billed Babblers, about 4.5 m above the ground. Babbler-like calls were heard again, but it was not clear whether any of them came from the cuckoo. No direct begging by the cuckoo was observed during this period. Owing to the lack of sound recordings and experimentation, this cannot be presented as a definite example of vocal mimicry (or even similarity) between avian host and its parasite. However, the vocalisations of fledgling Pied Cuckoos and Southern Pied Babblers T. bicolor hosts in South Africa (A. Ridley pers. comm.). It should be noted that both these examples differ from the Sri Lankan observation in that the vocal similarity in this account was between a young cuckoo and adults of the host species rather than between young birds of both species.

It is possible that Pied Cuckoo nestlings imitate the different begging calls of their hosts in different parts of their range the better to solicit food from the host parents or to avoid being rejected by them. Such vocal mimicry has already been found in Horsfield’s Bronze Cuckoo Chrysococcyx basalis of Australia. These birds lay their eggs in the nests of more than one other species. The nestling Horsfield’s Bronze Cuckoo alters its begging call to match that of the host chicks (Langmore et al. 2008). Adult males of most species of the brood-parasitic indigobirds and whydahs Vidua spp. of Africa incorporate elements of their hosts’ (both adult and nestling) vocalisations into their own repertoires (Payne et al. 1998, 2000), and in some species at least the begging call of Vidua nestlings resembles that of their host (Payne & Payne 2002). However, detailed experiments and sound recordings are required to demonstrate if Pied Cuckoos do indeed copy the vocalisations of host species (both young and/or adults), and to interpret the significance of this behaviour.

Birdwatchers and ornithologists are urged to pay attention to the vocalisations of both adult and immature avian brood parasites and their hosts, and to make sound recordings and field notes when possible. The nestling Horsfield’s Bronze Cuckoo alters its begging call to match that of the host chicks (Langmore et al. 2008). Adult males of most species of the brood-parasitic indigobirds and whydahs Vidua spp. of Africa incorporate elements of their hosts’ (both adult and nestling) vocalisations into their own repertoires (Payne et al. 1998, 2000), and in some species at least the begging call of Vidua nestlings resembles that of their host (Payne & Payne 2002). However, detailed experiments and sound recordings are required to demonstrate if Pied Cuckoos do indeed copy the vocalisations of host species (both young and/or adults), and to interpret the significance of this behaviour.

Birdwatchers and ornithologists are urged to pay attention to the vocalisations of both adult and immature avian brood parasites and their hosts, and to make sound recordings and field notes when possible. The nestling Horsfield’s Bronze Cuckoo alters its begging call to match that of the host chicks (Langmore et al. 2008). Adult males of most species of the brood-parasitic indigobirds and whydahs Vidua spp. of Africa incorporate elements of their hosts’ (both adult and nestling) vocalisations into their own repertoires (Payne et al. 1998, 2000), and in some species at least the begging call of Vidua nestlings resembles that of their host (Payne & Payne 2002). However, detailed experiments and sound recordings are required to demonstrate if Pied Cuckoos do indeed copy the vocalisations of host species (both young and/or adults), and to interpret the significance of this behaviour.

Birdwatchers and ornithologists are urged to pay attention to the vocalisations of both adult and immature avian brood parasites and their hosts, and to make sound recordings and field notes when possible. The nestling Horsfield’s Bronze Cuckoo alters its begging call to match that of the host chicks (Langmore et al. 2008). Adult males of most species of the brood-parasitic indigobirds and whydahs Vidua spp. of Africa incorporate elements of their hosts’ (both adult and nestling) vocalisations into their own repertoires (Payne et al. 1998, 2000), and in some species at least the begging call of Vidua nestlings resembles that of their host (Payne & Payne 2002). However, detailed experiments and sound recordings are required to demonstrate if Pied Cuckoos do indeed copy the vocalisations of host species (both young and/or adults), and to interpret the significance of this behaviour.

Thus, the calls of the Yellow-billed Babblers in the vicinity should be noted. Many thanks go to Michael Mills, Suhel Quader and Amanda Ridley for providing information from their own experiences with Pied Cuckoos, and to Claire Spottiswoode for reading and commenting on the typescript.

Acknowledgements

Many thanks go to Michael Mills, Suhel Quader and Amanda Ridley for providing information from their own experiences with Pied Cuckoos, and to Claire Spottiswoode for reading and commenting on the typescript.

References